On the Galois correspondence for Hopf Galois structures
نویسندگان
چکیده
We study the question of the surjectivity of the Galois correspondence from subHopf algebras to subfields given by the Fundamental Theorem of Galois Theory for abelian Hopf Galois structures on a Galois extension of fields with Galois group Γ, a finite abelian p-group. Applying the connection between regular subgroups of the holomorph of a finite abelian p-group (G,+) and associative, commutative nilpotent algebra structures A on (G,+), we show that if A gives rise to a H-Hopf Galois structure on L/K, then the K-subHopf algebras of H correspond to the ideals of A. Among the applications, we show that if G and Γ are both elementary abelian p-groups, then the only Hopf Galois structure on L/K of type G for which the Galois correspondence is surjective is the classical Galois structure.
منابع مشابه
On the Galois Correspondence Theorem in Separable Hopf Galois Theory
In this paper we present a reformulation of the Galois correspondence theorem of Hopf Galois theory in terms of groups carrying farther the description of Greither and Pareigis. We prove that the class of Hopf Galois extensions for which the Galois correspondence is bijective is larger than the class of almost classically Galois extensions but not equal to the whole class. We show as well that ...
متن کاملFixed-point Free Endomorphisms and Hopf Galois Structures
Let L|K be a Galois extension of fields with finite Galois group G. Greither and Pareigis [GP87] showed that there is a bijection between Hopf Galois structures on L|K and regular subgroups of Perm(G) normalized by G, and Byott [By96] translated the problem into that of finding equivalence classes of embeddings of G in the holomorph of groups N of the same cardinality as G. In [CCo06] we showed...
متن کاملHomotopic Hopf-Galois extensions of commutative differential graded algebras
This thesis is concerned with the definition and the study of properties of homotopic Hopf-Galois extensions in the category Ch 0 k of chain complexes over a field k, equipped with its projective model structure. Given a differential graded k-Hopf algebra H of finite type, we define a homotopic H-Hopf-Galois extension to be a morphism ' : B ! A of augmented H-comodule dg-k-algebras, where B is ...
متن کاملA History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملCounting Hopf Galois Structures on Non-abelian Galois Field Extensions
Let L be a field which is a Galois extension of the field K with Galois group G. Greither and Pareigis [GP87] showed that for many G there exist K-Hopf algebras H other than the group ring KG which make L into an H-Hopf Galois extension of K (or a Galois H∗object in the sense of Chase and Sweedler [CS69]). Using Galois descent they translated the problem of determining the Hopf Galois structure...
متن کامل